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Introducing the Problem



A global storm-resolving model (GSRM) with a finer grid of 1-3 km may (with work) do great things, 
but it is very expensive!

Goal: 
Use a realistic GSRM to train a skillful machine-learning based parameterization of 
subgrid clouds and precipitation for a coarser-grid global climate model.

Goal: Improving a climate model to improve rainfall predictions 
using machine learning (ML)
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Coarse-resolution dynamics and parameterized physics
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Apparent momentum source
(for now rely on coarse model 
parameterizations of PBL, GWD, etc.)
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Past work:  Training ML using a coarse-grained 4 km tropical channel simulation

Training regionTesting region

Coarse-graining

A

B

C

• 160 km coarse (low-res) grid
• Calculate Q1,2(r, t) (coarse-grid ‘moist physics’ tendencies 

including radiation) as residuals of dynamical equations.
• Unified moist physics, turbulence and radiation parameterization:  

Learn Q1,2 as functions of local column conditions using a neural net. 

106 training boxes
from 80-day simulation

• Use 80-day 4 km aquaplanet run as ‘truth’ to machine-learn 
moist physics parameterization for the low-res model. 

• Goal: forecast with low-res dycore + ML param should 
match hi-res run.

Brenowitz and Bretherton 2018, 2019; Rasp et al. 2018; 
O’Gorman and Yuval 2020
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Couple the ANN to the flow solver on 160 km grid 

Precipitable water after 5 days Brenowitz and Bretherton (2019)

If inputs and error metric are carefully designed to prevent rapid model blow-up,
hi-res model is skillfully forecast by low-res model with NN parameterization

…but the ‘climate’ slowly drifts after 10 days toward a weaker ITCZ

See Rasp et al. (2018, GRL) and O’Gorman and Yuval (2020, arXiv) for other aquaplanet
successes with similar methods applied to related models.

‘Truth’ ‘Forecast’
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Target model: FV3GFS/Shield



Can we apply same ML approach to GFDL’s 3 km FV3-GFS global atmospheric model?

FV3-GFS DYAMOND run
S.-J. Lin and Xi Chen, GFDL
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FV3GFS and SHiELD1 global weather/climate models

• FV3GFS: Open-source global atmosphere model used by NOAA for operational 
weather forecasts

• FV3 dycore – Customized D-grid finite volume method on cubed sphere.
• Nonhydrostatic by default, 80 vertical levels used here.
• Specified time-varying sea-surface temperature used here
• Horizontal grid resolutions: 

• 3 km (C3072)   No deep cumulus parameterization or gravity-wave drag
• 13 km Used for NCEP’s current operational global weather forecasts
• 25 km                Finest grid currently practical for climate simulations of many decades
• 200 km (C48)   Typical coarse climate model grid – good for prototyping or millennial runs.

• Physical parameterizations: 
• Land surface and surface fluxes (NOAH)
• Radiation (RRTMG)
• Gravity-wave drag
• Boundary-layer (including shallow clouds) and shallow Cu (Han-Bretherton, Han-Pan)
• Cloud microphysics and subgrid variability (GFDL one-moment)
• Deep cumulus convection (SAS)

1 GFDL’s SHiELD is FV3GFS with modest changes to cloud physics and advection and is not open-source.
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Training dataset:  nudged 3 km SHiELD (modified FV3-GFS)

• Training dataset: 40 d ‘nudged DYAMOND’ simulation on GAEA (1 Aug to 9 Sep 2016):
- Observed SSTs
- Light nudging (𝝉 = 1 day) of 3 km T/u/v/ps to ERA5 reanalysis keeps meteorology ‘data-

aware’.  Nudging tendencies are considered to be part of the learned physics
- Store atmospheric and land-surface restart fields coarse-grained to 25 km every 15 min
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40 d mean precipitation bias over land: 3 km SHiELD vs. 200 km FV3GFS

3 km rainfall bias much smaller over sub-Saharan Africa and Himalayas
Diurnal cycle of  precipitation over land is also greatly improved in SHiELD
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(GPCP)
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Our Approach(es)



Coarse model physics

We run ML on top of four configurations of the coarse-resolution model:

1. physics-on
• All physical parameterizations on 

(land surface, boundary layer, convection, radiation, microphysics, gravity wave drag)

2. deep-off
• Turn off deep convection scheme

3. clouds-off
• Deep and shallow convection schemes off
• No microphysics
• Use clear-sky radiation only

4. physics-off
• Run only dynamical core
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Coarse-resolution dynamics and parameterized physics
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Apparent momentum source
(for now rely on coarse model 
parameterizations of PBL, GWD, etc.)



Coarse-graining and tendency-difference method
• 𝑎# 𝑡, 𝑥, 𝑦, 𝜎 : field (e.g. humidity) at fine resolution.   𝑎*(𝑡, 𝑥, 𝑦, 𝜎) is coarse-res

• Coarse-graining operator: ⋅ (horizontal averaging)

• Coarse model (200 km FV3GFS) should match fine model (3 km SHiELD) starting at 𝑎* = 𝑎#:

/01
/2
≈ /04

/2

• Uncorrected coarse model:
𝜕𝑎*
𝜕𝑡 6

= 𝐴* + 𝑄0
:, 𝐴* = −𝐮* ⋅ ∇𝑎*

• Coarse model can include no physics (𝑄0
: = 0) or a subset of parameterized physical processes

(e.g. turbulence, radiation, clouds, Cu parameterization).

• Machine-learn a state-dependent corrective source ∆𝑄0 for the coarse model:

Δ𝑄0 =
/04
/2

− /01
/2 6

→ A0
A2 *

= A01
A2 6

+ ∆𝑄0BC ≅
/04
/2
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Coarse-resolution model initialized from each 
coarsened high-resolution snapshot and run 

forward for 15 minutes, with a 1-minute timestep.

Low-res tendencies computed from final minute.

Apparent source:

Coarsened state of fine-resolution model saved every 15 minutes. 
Fine-res tendencies computed from these snapshots. 

Original “One-Step” tendency difference method
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Original “One-Step” tendency difference method



Conceptual issues over topography
• Consider 3 km -> 200 km  coarse-graining over the Himalayas

• We coarse-grain to obtain 
vertical profiles and apparent 
sources of T, q, etc.

• 5 km relief within a coarse cell
• Most fields are much more 

constant along a pressure 
surface than along a terrain-
following model surface

→ Coarse-grain on pressure levels, 
not model levels
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Vertical velocity in upper troposphere (~250hPa)

Averaged over 348 initialization 
times spanning training dataset.

Fine resolution model coarsened 
to 200km resolution
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Vertical velocity noise over topography



Nudging method for coarse-graining
• Strongly nudge coarse model to high-resolution model

/0E
/2 = /01/2 + ∆𝑄0F ≅

/04
/2

∆𝑄0F = 
04G01
H , (𝜏=3h in results here)

“nudge to fine-res”:

∆𝑄0BC = ∆𝑄0F
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state ”physics
on” Nudging

state “physics 
on” ML



“Nudge to obs” method
• Not a coarse-graining method, no fine-res model involved

• Enables much longer simulations

• Nudge coarse model to observations (analysis), predict the nudging tendency

/0E
/2

= /01
/2

+ ∆𝑄0F ≅
/04
/2

∆𝑄0F = 
04G01
H , (𝜏=6h in results here)

∆𝑄0BC = ∆𝑄0F “nudge to obs”
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state ”physics
on” Nudging

state “physics 
on” ML



“hybrid” method
• Strongly nudge coarse model to high-resolution model

/0E
/2 = /01/2 + ∆𝑄0F ≅

/04
/2

∆𝑄0F = 
04G01
H , (𝜏=3h in results here)

“hybrid fine-res” or “hybrid”:

∆𝑄0BC =
/04
/2

− /01
/2
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state “clouds 
off” Nudging

state “clouds 
off” ML

High-res 
tendency*

“clouds 
off”-

* Computed eddy flux + physics



Training set = 1.7M samples (130 initializations x 13824 grid points)
Test set = 660K samples (48 initializations x 13824 grid points)
Train/test data separated by split date to minimize correlated data across sets

Random Forest

Neural Network

Machine learning: model training
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surface 
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Early Results



• Skill improvements for several variables on 
weather prediction timescales

• Drift causing issues
• Solutions being investigated
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Prognostic run improves on baseline, but drifts
Global mean RMSE
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Random forests more stable out of the box

Negative values = precipitation (mm/s)

• This model with NN “blows up” after ~6 days
• Random forest outputs are bounded, neural network outputs are not
• Exploring several possibilities to stabilize NNs
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Some improvement to diurnal cycle over land
• nudged and hybrid approaches improve diurnal cycle of precipitation over land
• Reproduces afternoon maximum of precipitation

Average over 10-day August prognostic run, minus 1 day spin-up

Composite over first 5 days of prognostic run
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Improvements in precipitation bias
• ML trained on “nudge to obs” improves precipitation bias
• Improvements in several areas
• Small large-scale bias increase in other areas, working to address

C48 MLC48 Baseline

Average over August 5, 2016 – September 10, 2016



Conclusions and Outlook

• VCM has developed a unique cloud-based workflow for training a ML correction 
to the coarse-resolution FV3GFS model based on fine-resolution X-SHIELD 
simulations from GFDL

• We have trained stable ML schemes that can make skillful global rainfall 
forecasts over land and ocean for 5 days or longer given specified SST

• “nudge to obs”, “nudge to fine”, and “hybrid” approaches all improve short-term 
skill, with varying degrees of climate drift

• Improvements are made to short-term diurnal cycle and bias of precipitation

• Investigating approaches to minimize drift and further improve model skill

• Investigating ways to further stabilize neural-network-based simulations
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